REVEAL Units of Study

Grade 3 Mathematics	
Unit 1	Math Is... (10 days) August 15 - August 26
Unit 2	Use Place Value to Fluently Add and Subtract within 1,000 (20 days) August 29 - September 26
Unit 3	Multiplication and Division (13 days) September 27 - October 12
Unit 4	Use Patterns to Multiply by $0,1,2,5$ and 10 (11 days) October 13 - October 28
Unit 5	Use Properties to Multiply by 3, 4, 6, 7,8, and 9 (13 days) October 31 - November 16
Unit 6	Connect Area and Multiplication (12 days) November 17 - December 9
Unit 7	Fractions (8 days) December 12 - January 5
Unit 8	Fraction Equivalence and Comparison (13 days) January 6 - January 25
Unit 9	Use Multiplication to Divide (16 days) January 26 - February 16
Unit 10	Use Properties and Strategies to Multiply and Divide (11 days) February 17 - March 6
Unit 11	Perimeter (11 days) March 7 - March 21
Unit 12	Measurement and Data (21 days) March 22 - April 27
Unit 13	Describe and Analyze 2-Dimensional Shapes (11 days) April 28 - May 12

Green: Priority Standards Grey: Additional Standards

Pink: Supporting Standards
Orange: Standards Not in Grade Level

	$\begin{gathered} \text { UNI } \\ \text { T } \end{gathered}$		1	2	3	4	5	6	7	8	9	10	11	12	13
	NS	1		X											
		2		X											
		3							X						
		4							X						
		5							X						
		6								X					
		7								X					
		8								X					
		9		X											
Stan	C	1		X											
dard		2			X	X									
s		3			X						X				
		4			X										
		5				X	X				X	X			
		6					X				X				
	AT	1		X											
		2			X	X	X				X				
		3		X	X	X	X					X			
		4			X										
		5			X	X	X						X		
		6				X	X					X			
	G	1													X
		2													X

	3												
	4							X					
M	1												X

Unit 1 - Math Is... (10 days) August 15 - August 26

General Description of the Unit

The focus of this unit is to build students' agency as doers of mathematics; to build students' proficiency with the habits of mind that are integral to doing mathematics; and to build understanding of the norms of interaction that allow for a productive math learning environment where students can develop, refine, and enhance the habits of mind that are integral to doing math.

Priority Standards

- 2.CA. 1 Add and subtract fluently within 100.
- 2.NS. 6 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones (e.g. 706 equals 7 hundreds, 0 tens, and 6 ones).

Understand that 100 can be thought of as a group of ten tens - called a "hundred." Understand that the numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
Proficiency Scales

Enduring Understandings

- Number Routines
- Sense-Making Routines
- Math Language Routines
- Students understand that math is everywhere in their lives.
- Students demonstrate understanding of the problem solving process, with a focus on making sense of a problem and determining a solution plan.
- Students demonstrate understanding of how real-world situations and problems can be modeled with mathematics.

Supporting Standards

- 2.CA. 5 Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal groups.
- 2.M. 7 Find the value of a collection of pennies, nickels, dimes, quarters, and dollars.
- 2.NS. 1 Count by ones, twos, fives, tens, and hundreds up to at least 1,000 from any given number.

Tiered Assessments

Essential Questions

- What does it mean to do math?
- What do you notice?
- What do you wonder?
- How are reading and math connected?
- Students demonstrate understanding of what constitutes a viable argument and how to critique the arguments of others.
- Students demonstrate understanding of patterns.
- Students understand the factors that contribute to a productive learning environment.

Key Concepts

- I can reflect on how I use math.
- I can recognize the skills, behaviors, and attitudes that help me do math.
- I can show a problem in different ways.
- I can explain different ways to think about numbers.

Related Concepts
 - N/A

Math Terms

- addends
- quantity
- model
- estimate
- exact
- combinations
- patterns
- relationships
- I can represent a real-world situation using mathematics.
- I can explain tools I can use to solve a problem.
- I can construct an argument to explain my thinking.
- I can explain my thinking with clear and appropriate terms.
- I can use patterns to develop efficient strategies to solve problems.
- I can explain why patterns are useful to solve problems.
- I can recognize the behaviors and mindsets that support a

Academic Terms

- interview
- strengths
- describe
- represent
- visualize
- appropriate
- defend
- efficient
- critique
- respectful

productive classroom learning environment. - I can identify the mindsets that help me problem-solve.		
Mathematical Processes - Construct viable arguments and critique the reasoning of others. - Make sense of problems and persevere in solving them. - Reason abstractly and quantitatively. - Model with mathematics. - Use appropriate tools strategically. - Attend to precision. - Look for and make use of structure. - Look for and express regularity in repeated reasoning.		Employability Skills
SEL Indicators - Self-Awareness - Self-Management - Social Awareness - Relationship Skills - Responsible Decision-Making		
Resources		
 Lesson 1-1 Lesson 1-2 Lesson 1-3 Lesson 1-4 Lesson 1-5 Lesson 1-6	Manipulatives/Materials - base-ten blocks - plastic coins - pattern blocks	Digital

Unit 2 - Use Place Value to Fluently Add and Subtract within 1,000 (20 days) August 29 - September 26

General Description of the Unit

In this unit, students extend their knowledge of place value to 3 -and 4 - digit numbers and apply this knowledge to adding and subtracting 3 -digit numbers. Students use place value to form estimates of sums and differences by rounding and using compatible numbers. They will extend their understanding of addition properties by discovering the order or grouping of three addends does not change the sum. Students also identify even and odd addition patterns to help check whether a sum is accurate. Students use their understanding of place value to learn strategies such as decomposing and adjusting, and then apply these strategies to help add and subtract more fluently. They also use their understanding of addition and subtraction to solve two-step word problems. Students will extend their understanding of place value, addition, and subtraction learned in previous grades.

Priority Standards

- 3.NS. 1 Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 .
- 3.C. 1 Fluently add and subtract whole numbers within 1,000 using strategies and algorithms based on place value, properties of operations, and relationships between addition and subtraction.

Proficiency Scales \bullet 3.NS.1 \bullet 3.C.1	Tiered Assessments
	Enduring Understandings

- Students understand that numbers have a predictable and generalizable structure, which extends their understanding of place value to 4 -digit numbers.
- Students develop an understanding of rounding using a number line and place value.
- Students build proficiency with estimating sums and differences.
- Students develop proficiency with addition strategies by using addition properties to add multi-digit numbers.
- Students strengthen their understanding of addition patterns to solve addition problems efficiently.
- Students gain fluency with addition as they use partial sums to add two 3-digit numbers.
- Students gain fluency with subtraction as they decompose a number to subtract two 3-digit numbers.
- Students build proficiency with addition and subtraction by using the strategy of adjusting numbers.
- Students build proficiency rewriting a subtraction equation as a related addition equation.
- Students build fluency with 3-digit addition by using different addition strategies.
- Students build proficiency in using different strategies to subtract two 3-digit numbers.
- Students use their understanding of representations to solve word problems involving addition and subtraction of 3-digit numbers.

Key Concepts

- I can represent 4-digit numbers

Related Concepts

- N/A
- What addition and subtraction strategies do you already know?
- What do you think you will be doing in this unit? in different ways.

Math Terms

- expanded form
- standard form
- I can explain how to represent 4-digit numbers in different ways.
- I can use number lines and place value to compare 4 -digit numbers.
- I can use symbols to show the comparison.
- I can round numbers to the nearest 10 and 100 .
- I can explain how to round numbers to the nearest 10 and 100.
- I can use compatible numbers to estimate sums and differences.
- I can explain how to use compatible numbers to estimate sums and differences.
- I can apply addition properties as strategies to help add more efficiently.
- I can explain how to apply addition properties as strategies to help add more efficiently.
- I can use addition patterns to help find a sum.
- I can explain how to use addition patterns to help find a sum.
- word form
- equal to
- greater than
- less than
- number line
- round
- estimate
- compatible number
- added
- even number
- odd number
- decompose
- difference
- sum
- bar diagram
- partial sum
- decompose
- unknown

Academic Terms

- determine
- represent
- apply
- compare
- discuss
- identify
- comparison
- reason
- justify
- strategy
- I can use horizontal and vertical formats to add partial sums.
- I can explain how to use horizontal and vertical formats to add partial sums.
- I can decompose a number line in different ways to help subtract.
- I can explain how to decompose a number line in different ways to help subtract.
- I can adjust numbers to make it easier to add or subtract two 3digit numbers.
- I can explain how to adjust numbers to make it easier to add or subtract two 3-digit numbers.
- I can show how addition and subtraction are related.
- I can explain how addition and subtraction are related.
- I can use different strategies to add 3-digit numbers.
- I can explain how to use different strategies to add 3digit numbers.
- I can use different strategies to subtract two 3-digit numbers.
- analyze
- identify
- support
- defend
- adjust
- process
- conclude
- response
- I can explain how to use different strategies to subtract two 3-digit numbers.
- I can solve problems that have more than one step.
- I can explain how to solve problems that have more than one step.

Mathematical Processes

- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.
- Model with mathematics.
- Use appropriate tools strategically.
- Construct viable arguments and critique the reasoning of others.
- Reason abstractly and quantitatively.
- Make sense of problems and persevere in solving them.
- Model with mathematics.

SEL Indicators

- Self-Awareness: Identify Emotions; Recognize Strengths; Accurate Self-Perception
- Relationship Skills: Social Engagement; Teamwork
- Social Awareness: Empathy
- Self-Management: Control Impulses; Organizational Skills; Goal-Setting
- Responsible Decision-Making: Solve Problems; Evaluate

Resources		
Textbook	Manipulatives/Materials	Digital Resources
Lesson 2-1	- base-ten blocks	
Lesson 2-1b	- blank number cubes	
Lesson 2-2	- deck of playing cards	
Lesson 2-3		

Lesson 2-4 Lesson 2-5 Lesson 2-6 Lesson 2-7 Lesson 2-8 Lesson 2-9 Lesson 2-10	- Place-Value Charts to 1,000s - number cubes - counters - index cards - Number Chart 401500 - numbered spinner - paper money - grid paper - Number cards 0-10 - transparent spinner - Problem-Solving Tool

General Description of the Unit

In this unit, students use a variety of representations to show multiplication and division situations. Visual representations of equal groups lay the foundation for multiplication and division. Real-life objects are used first, with students moving to representing multiplication and division with manipulatives, and then with numbers and symbols.

Priority Standards

- 3.C. 3 Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.

Supporting Standards

- 3.AT. 3 Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).
- 4.C.7 Show how the order in which two numbers are multiplied (commutative property) and how numbers are grouped in multiplication (associative property) will not change the product. Use these properties to show that numbers can be multiplied in any order. Understand and use the distributive property.
- 3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).
- 3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication.
- 3.C.4 Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div 8$ as the number of objects

- I can represent multiplication using arrays.
- I can explain and demonstrate one of the meanings of multiplication as the total numbers of objects in an array.
- I can show that the order of two factors in a multiplication equation does not change the product.
- I can explain why the order of two factors in a multiplication equation does not change the product.
- I can represent division using equal sharing.
- I can demonstrate one of the meanings of division as the total number of objects shared equally among groups.
- I can show division using equal grouping.
- I can demonstrate one of the meanings of division as grouping the total number of objects into groups of equal size.
- I can use arrays and equal groups to identify the relationship between multiplication and division.
- Dividend
- Divisor
- Quotient
- Equal Groups
- Unknown

Academic Terms

- Create
- Determine
- Represent
- Strategy
- Conclude
- Structure
- Context
- Contrast
- Compare
- Characterize
- Identify
- I can explain the relationship between multiplication and division using different representations.
- I can use a representation to identify an unknown in a multiplication or division equation.
- I can explain how to use a representation to identify an unknown in a multiplication or division equation.

Mathematical Processes

- Model with mathematics.
- Attend to precision.
- Look for and make use of structure.
- Reason abstractly and quantitatively.
- Model with mathematics.
- Construct viable arguments and critique the reasoning of others.

SEL Indicators

- Relationship Skills: Communication (Lesson 3-1)
- Self-Management: Self-Motivation (Lesson 3-2)
- Social Awareness: Appreciate Diversity (Lesson 3-3)
- Responsible Decision Making: Ethical Responsibility (Lesson 3-4)
- Self-Awareness: Self-Efficacy (Lesson 3-5)
- Self-Management: Organizational Skills (Lesson 3-6)
- Responsible Decision-Making: Analyze Situations (lesson 3-7)

Resources

Textbook
Manipulatives/Materials
Digital

Lesson 3-1	\bullet blank number cubes	\bullet
Lesson 3-2	• counters	
Lesson 3-3	• yarn or string	
Lesson 3-4	• blank number cubes	
Lesson 3-5	\bullet counters	
Lesson 3-6	\bullet geoboards	
Lesson 3-7	\bullet rubber bands	
	• cup	
	• dot cube	
	\bullet paper plates	
	\bullet index cards	

Unit 4 - Use Patterns to Multiply by 0, 1, 2, 5, and 10 (11 days) October 13 - October 28

In this unit, students discover patterns in products involving the numbers $0,1,2,5$, and 10 . Students use varying methods and representations to remember multiplication with the factors 2,5 , and 10 . They refer back to what they have previously learned about equal groups and repeated addition. A multiplication facts table is also used to find patterns in the products that can help students recall multiplication facts.	
Priority Standards - 3.C. 5 Multiply and divide within 100 using strategies, such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5$ $=8$), or properties of operations. - 3.C. 2 Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal "jumps" on a number line. Understand the properties of 0 and 1 in multiplication.	Supporting Standards - 3.AT. 6 Create, extend, and give an appropriate rule for number patterns using multiplication within 100.
Proficiency Scales \bullet 3.C. 2	Tiered Assessments
Enduring Understandings - Students develop understanding of what it means to multiply by $0,1,2,5$, and 10 . - Students develop understanding of patterns when multiplying by $0,1,2,5$, and 10 . - Students build proficiency with multiplication within 100. - Students build proficiency with basic multiplication facts with $0,1,2,5$ and 10 .	Essential Questions - How are they the same? - How are they different? - What do you notice? - What do you wonder? - Is this statement always true? - Which one doesn't belong? - What math do you see in this problem? - What question could you ask?
Key Concepts $\frac{\text { Related Concepts }}{\bullet}$	Math Terms - Multiple

- I can use patterns to multiply with 2.
- I can explain how to use patterns to multiply by 2 .
- I can use patterns to multiply with 5.
- I can explain how to use patterns to multiply with 5 .
- I can use patterns to multiply with 10.
- I can explain how to use patterns to multiply with 10.
- I can use patterns to multiply with 1 and 0 .
- I can explain how to use patterns to multiply with 1 and 0.
- I can use patterns to help me multiply.
- I can describe how patterns can help me recall multiplication facts.
- I can use multiplication and division to solve problems involving equal groups.
- I can explain how to use multiplication and division to solve problems involving equal groups.
- Reason abstractly and quantitatively.
- Attend to precision.
- Model with mathematics.
- Look for and make use of structure.
- Construct viable arguments and critique the reasoning of others.

SEL Indicators

- Self-Awareness: Accurate Self-Perception (Lesson 4-1)
- Self-Management: Self-Discipline (Lesson 4-2)
- Responsible Decision-Making: Reflect (Lesson 4-3)
- Social Awareness: Develop Perspective (Lesson 4-4)
- Relationship Skills: Build Relationships (Lesson 4-5)
- Responsible Decision-Making: Solve Problems (Lesson 4-6)

Resources		
Textbook	Manipulatives/Materials	Digital
Lesson 4-1	- Transparent Spinner	
Lesson 4-2	- Counters	
Lesson 4-3	- Multiplication Fact	
Lesson 4-4	Table to 10 Teaching	
Lesson 4-5	Resource	
Lesson 4-6	- Blank Cubes	
	- Counters	
	- Base-Ten Blocks	
	- Index Cards	
	Teaching Resource	

- Students build proficiency with doubling a product to find another product.

Key Concepts

- I can decompose factors to multiply.
- I can explain how to decompose a factor to multiply.
- I can use properties to recall multiplication facts with 3.
- I can describe properties used to recall multiplication facts with 3 .
- I can use properties to recall multiplication facts with 4.
- I can describe properties used to recall multiplication facts with 4.
- I can use properties to recall multiplication facts with 6.
- I can describe properties used to recall multiplication facts with 6 .
- I can use properties to recall multiplication facts with 8.
- I can describe properties used to recall multiplication facts with 8.
- I can use properties to recall multiplication facts with 7 and 9.
- I can describe properties used to recall multiplication facts with 7 and 9.

Related Concepts

- N/A
- Is the statement always true?
- What math do you see in this problem?
- What is the question?

Math Terms

- Array
- Decompoe
- Multiplication
- Product
- Unknown

Academic Terms

- Analyze
- Strategy
- Create
- Discuss
- Process
- Summarize
- Comparison
- Contrast
- Determine
- Investigate
- Defend
- I can use arrays to represent and solve problems.
- I can describe how to use arrays to represent and solve problems.

Mathematical Processes

Employability Skills

- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.
- Use appropriate tools strategically.

SEL Indicators

- Self-Awareness: Recognize Strengths (Lesson 5-1)
- Self-Management: Self-Motivation (Lesson 5-2)
- Social Awareness: Appreciate Diversity (Lesson 5-3)
- Relationship Skills: Communication (Lesson 5-4)
- Self-Awareness: Self-Confidence (Lesson 5-5)
- Self-Management: Control Impulses (Lesson 5-6)
- Responsible Decision-Making: Identify Problems (Lesson 5-7)

Resources		
Textbook	Manipulatives/Materials	Digital Resources
Lesson 5-1	- Color Tiles	
Lesson 5-2	- Glue	
Lesson 5-3	- Grid Paper	
Lesson 5-4	- Scissors	
Lesson 5-5	- Geoboards	
Lesson 5-6	- Rubber Bands	
Lesson 5-7	- Blank Cubes	
	- Counters - Pattern Blocks	
	- Pattern Blocks - Index Cards	

Unit 6 - Connect Area and Multiplication (12 days) November 17-December 9

General Description of the Unit

In this unit, students discover strategies for finding the area of rectangles and composite rectilinear figures. They are introduced to the concept of finding the area of a 2-dimensional figure by covering it with unit squares without gaps or overlaps and counting the number of unit squares, a process known as tiling. Students apply the distributive property as they discover that they can decompose a larger rectangle is the sum of areas of the smaller rectangles. This understanding is extended to the area of composite figures. Students apply their understanding of area to find the area of figures in real-world situations.

Priority Standards

- 3.M. 5 Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.
Proficiency Scales

Tiered Assessments

Essential Questions

- Which doesn't belong?
- What do you notice?
- What do you wonder?
- What question could you ask?
- Is the statement always true?

Supporting Standards

 in mathematical reasoning.
Enduring Understandings

- Students develop understanding of the area of a figure and its relationship to the amount of surface on a figure.
- Students develop an understanding of multiplying two numbers to yield an array of square units covering a rectangular area.
- Students develop understanding of area as the sum of the areas of its non-overlapping parts.
- Students develop understanding of the distributive property as it can be used to find the area of a figure.
- Students build proficiency with tiling and counting unit
squares to measure area.
- 3.M. 6 Multiply side lengths to find areas of rectangles with whole-number side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas
- Students build proficiency with finding area by multiplying.
- Students build proficiency with decomposing figures into rectangles to find the area.
- Students build proficiency with multiplication fluency as they decompose numbers to find the area of rectangles
- Students build proficiency with multiplication facts by finding possible factors of a product.

Key Concepts

- I can find the area of a figure

Related Concepts

- N/A

Math Terms

- Area
- Square Units
- Unit Square
- Multiplication
- Composite Flgure
- Decompose

Academic Terms

- Discuss
- Strategy
- Define
- Reason
- Claim
- Comparison
- Identify
- I can explain how to decompose a composite figure into rectangles to find its area.
- I can decompose a side length of a rectangle to find the area.
- I can explain how to decompose to find the area of a rectangle.
- I can solve real-world problems involving the area of rectangles.
- I can explain how to solve realworld problems involving the area of rectangles.

Employability Skills

Mathematical Processes

- Reason abstractly and quantitatively.
- Look for and express regularity in repeated reasoning.
- Attend to precision.
- Look for and make use of structure.
- Construct viable arguments and critique the reasoning of others.
- Make sense of problems and persevere in solving them.

SEL Indicators

- Relationship Skills: Build Relationships (Lesson 6-1)
- Self-Management: Manage Stress (Lesson 6-2)
- Responsible Decision-Making: Evaluate (Lesson 6-3)
- Social Awareness: Respect Others (Lesson 6-4)
- Self-Awareness: Identify Emotions (Lesson 6-5)
- Social Awareness: Develop Perspective (Lesson 6-6)

Resources				
Textbook	Manipulatives/Materials			Digital
Lesson 6-1	• Color Tiles			
Lesson 6-2	• Tiling Figures Teaching			
Lesson 6-3	Resource			
Lesson 6-4	• Grid Paper			
Lesson 6-5	• Markers			
Lesson 6-6				

Unit 7 - Fractions (8 days) December 12 - January 5

General Description of the Unit

In this unit, students begin to explore fractions. They experiment with different ways to partition a while into equal parts with equal areas. Students learn that the interval between two whole numbers on a number line represents one whole. They can partition the interval into equal parts. Each equal part can be represented using a unit fraction. Students learn that a unit fraction has a numerator of one. Iterations of unit fractions can be used to write a fraction that represents more than one part of a whole. Whole numbers can also be represented as fractions. Fraction tiles, fraction circles, shapes, and numbers lines can be used to model, and skip counting, repeated addition, and multiplication can be used to determine how to write whole numbers.

Priority Standards

- 3.G. 4 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole ($1 / 2,1 / 3,1 / 4,1 / 6,1 / 8$).
- 3.NS.3.Understand a fraction, $1 / \mathrm{b}$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a part of size $1 / \mathrm{b}$. [In grade 3 , limit denominators of fractions to $2,3,4,6,8$.]

Proficiency Scales \bullet 3.NS. 3 Enduring Understandings

- Students develop an understanding of a fraction as one or more parts of a whole and how to represent them by shading or on a number line.
- Students develop an understanding of a unit fraction as one part of a whole partitioned into equal parts.
- Students develop an understanding of fractions that are equal to one and whole numbers that are written as a fractions.

Supporting Standards

- 3.NS. 4 Represent a fraction, $1 / \mathrm{b}$, on a number line by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / \mathrm{b}$ on the number line.
- 3.NS. 5 Represent a fraction, a / b, on a number line by marking off lengths $1 / \mathrm{b}$ from 0 . Recognize that the resulting interval has size a / b, and that its endpoint locates the number a / b on the number line.

Tiered Assessments

Essential Questions

- How are they the same?
- How are they different?
- Tell me everything you can.
- Students build proficiency with partitioning shapes to create equal parts and identify equal parts of a whole.
- Students build proficiency with using fraction notation to name unit fractions, fractions, whole numbers as fractions, and fractions greater than one representing them.

Key Concepts

- I can partition a shape into equal parts.
- I can describe the equal parts of a shape.
- I can use a fraction to represent one or more parts of a whole.
- I can explain how to represent a fraction using the meanings of the numerator and the denominator.
- I can represent a fraction on a number line.
- I can explain how to represent a fraction on a number line.

Math Terms

- Partition
- Denominator
- Fraction
- Numerator
- Unit Fraction
- Number Line

Academic Terms

- Defend
- Support
- Comparison
- Identify
- Determine

Mathematical Processes

Employability Skills

- Construct viable arguments and critique the reasoning of others.
- Look for and express regularity in repeated reasoning.
- Look for and make use of structure.

SEL Indicators

- Social Awareness: Appreciate Diversity (Lesson 7-1)
- Self-Management: Self-Motivation (Lesson 7-2)
- Self-Awareness: Recognize Strengths (Lesson 7-3)
- Relationship Skills: Social Engagement (Lesson 7-4)
- Responsible Decision-Making: Identify Problems (Lesson 7-5)
- Relationship Skills: Teamwork (Lesson 7-6)

Resources

	Textbook	Manipulatives/Materials	Digital
Lesson 7-1		\bullet Blank Cubes	
Lesson 7-2		\bullet Grid Paper	
Lesson 7-3		\bullet Index Cards	
	• Scissors		
		\bullet Fraction Circles	
		•Rulers	

Unit 8 - Fraction Equivalence and Comparison (13 days) January 6 - January 25

General Description of the Unit

In this unit, students continue their study of fractions as they develop strategies for comparing two fractions. They learn tha fractions can only be compared when they come from wholes of the same size. Whent they refer to different-sized wholes, the lesser fraction might actually refer to a greater quantity. Representations such as pizzas, circles, rectangles, and fraction models all help students to visually understand how two fractions can be equivalent.lesser fraction might actually refer to a greater quantity. Representations such as pizzas, circles, rectangles, and fraction models all help students to visually understand how two fractions can be equivalent.

Priority Standards

- 3.NS. 7 Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).

Supporting Standards

- 3.NS. 6 Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.
- 3.NS. 8 Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions (e.g., by using a visual fraction model).

Proficiency Scales

- 3.NS. 7

Enduring Understandings

- Students develop understanding of representing equivalent fractions with fraction models and on a number line.
- Students develop understanding of why fraction comparisons are valid only when the wholes are the same size.
- Students develop understanding of how to compare fractions with the same numerator or the same denominator.

Tiered Assessments

Essential Questions

- Which doesn't belong?
- What do you notice?
- What do you wonder?
- How are they the same?
- How are they different?
- Is the statement always true?
- What is the question?
- Students develop understanding of how to use fraction models and number lines to compare fractions and justify the comparisons.
- Students build proficiency with fraction representations and the concept of equivalency.
- Students build proficiency with comparing two fractions and recording the results using the symbols $>$, <, or =.

Key Concepts

- I can represent equivalent fractions.
- I can describe how to use fraction models to determine equivalent fractions.
- I can use fraction models to generate equivalent fractions.
- I can explain why two fractions are equivalent.
- I can use number lines to represent equivalent fractions.
- I can explain how to use number lines to represent equivalent fractions.
- I can compare fractions when they refer to the same whole.
- I can explain why you can compare fractions only when they refer to the same whole.

Related Concepts

- N/A

Math Terms

- Equivalent
- Denominator
- Numerator

Academic Terms

- Determine
- Process
- Indicate
- Contrast
- Identify
- Comparison
- Create
- Evidence
- Justify
- Strategy
- I can compare fractions with the same denominators and different numerators.
- I can explain how to compare fractions with the same denominators and different numerators.
- I can compare fractions with the same numerators and different denominators.
- I can explain how to compare fractions with the same numerators and different denominators.
- I can use fractions models and number lines to justify comparisons between two fractions.
- I can explain how to use fractions models and number lines to justify comparisons between two fractions.

Mathematical Processes

- Reason abstractly and quantitatively.
- Model with mathematics.
- Look for and use structure.
- Attend to precision.
- Use appropriate tools strategically.
- Construct viable arguments and critique the reasoning of others.
- Look for and express regularity in repeated reasoning.

SEL Indicators

- Relationship Skills: Building Relationships (Lesson 8-1)
- Social Awareness: Develop Perspective (Lesson 8-2)
- Self-Awareness: Identify Emotions (Lesson 8-3)
- Relationship Skills: Social Engagement (Lesson 8-4)
- Self-Engagement: Organizational Skills (Lesson 8-5)
- Responsible Decision-Making: Reflect (Lesson 8-6)
- Self-Awareness: Self-Efficacy (Lesson 8-7)

Resources
Textbook Manipulatives/Materials

- Dominoes
- Index Cards
- Fraction Tiles
- Grid Paper
- Blank Cubes
- Fraction Circles
- Spinner Numbers Teaching Resources
- Transparent Spinners

- Students develop understanding of how division and multiplication are related.
- Students develop understanding of how to use related multiplication facts to divide.
- Students build proficiency with dividing within 100.
- What do you wonder?
- What can you tell me about the fact triangles?
- What do you notice?
- What do you wonder?
- How are they the same?
- How are they different?
- What question could you ask?
- Which doesn't belong?
- Is the statement always true?

Key Concepts

- I can use an unknown-factor problem to solve a division equation.
- I can describe how to use an unknown-factor problem to solve a division equation.
- I can use related multiplication facts to recall division facts with 2.
- I can describe strategies used to recall division facts with 2 .
- I can use related multiplication facts to recall division facts with 5 and 10.
- I can describe strategies used to recall division facts with 5 and 10.
- I can use patterns and rules to recall division facts with 1 and 0 .

Related Concepts

- N/A

Math Terms

- Fact Family
- Fact Triangle
- Quotient
- Unknown
- Dividend
- Divisor
- Multiplication Fact Table
- Decompose
- Pattern

Academic Terms

- Justify
- Strategy
- Determine
- Discuss
- Organize
- Summarize
- Create
- Support
- Information
- I can describe patterns and rules
- Analyze to recall division facts with 1 and 0.
- I can use related multiplication facts to recall division facts with 3 and 6.
- I can describe strategies used to recall division facts with 3 and 6 .
- I can use related multiplication facts to recall division facts with 4 and 8.
- I can describe strategies used to recall division facts with 4 and 8 .
- I can use related multiplication facts to recall division facts with 9.
- I can describe strategies used to recall division facts with 9 .
- I can use related multiplication facts to recall division facts with 7.
- I can describe strategies used to recall division facts with 7.
- I can use multiplication and division strategies to recall facts.
- I can explain how to use multiplication and division strategies to recall facts.

Mathematical Processes

Employability Skills

- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.
- Attend to precision.
- Use appropriate tools strategically.
- Construct viable arguments and critique the reasoning of others.
- Make sense of problems and persevere in solving them.
- Model with mathematics.

SEL Indicators

- Responsible Decision-Making: Analyze Situations (Lesson 9-1)
- Social Awareness: Respect Others (Lesson 9-2)
- Self-Management: Self Discipline (Lesson 9-3)
- Relationship Skills: Communication (Lesson 9-4)
- Self-Management: Manage Stress (Lesson 9-5)
- Self-Awareness: Accurate Self-Perception (Lesson 9-6)
- Social Awareness: Empathy (Lesson 9-7)
- Self-Awareness: Recognize Strengths (Lesson 9-8)
- Responsible Decision-Making: Ethical Responsibility (Lesson 9-9)

Resources

Textbook	Manipulatives/Materials	Digital
Lesson 9-1	- Blank Cubes	
Lesson 9-2	- Blank Fact Triangles Teaching	
Lesson 9-3	Resource	
Lesson 9-4	- Index Cards	
Lesson 9-5	- Dimes	
Lesson 9-6	- Nickels	
Lesson 9-7	- Pennies	
Lesson 9-8	- Counters	
Lesson 9-9	- Craft Sticks - Colored Pencils	

	Multiplication Fact Table to 10 Teaching Resource	

- Students develop understanding of equations that can be used to solve word problems.
- Students develop understanding of estimation to assess the reasonableness of a solution.
- Students build proficiency with basic fact sets though an understanding of the Associative Property of Multiplication.
- Students build proficiency with writing equations and representing unknowns.

Key Concepts

- I can multiply by multiples of 10 .
- I can explain how to use basic facts, place-value understanding, and patterns to multiply by a multiple of 10 .
- I can identify patterns in the multiplication fact table.
- I can explain how to identify patterns in the multiplication fact table.
- I can group three factors in different ways to multiply.
- I can explain how grouping factors can make it easier to multiply three numbers.
- I can solve two-step word problems involving multiplication and division.

Related Concepts

- N/A

Math Terms

- Multiple
- Factor
- Pattern
- Product
- Bar Diagram
- Unknown
- Estimate

Academic Terms

- Strategy
- Structure
- Identify
- Justify
- Process
- Determine
- Represent
- Conclude
- Analyze
- I can explain how to use representations and equations
- Reasonable

```
to solve two-step word problems.
```

- I can solve two-step word problems involving any of the four operations.
- I can determine whether a solution is reasonable.
- I can explain whether a solution is reasonable.

Mathematical Processes

- Reason abstractly and quantitatively.
- Look for and make use of structure.
- Construct viable arguments and critique the reasoning of others.
- Make sense of problems and persevere in solving them.
- Use appropriate tools strategically.
- Attend to precision.

SEL Indicators

- Self-Management: Goal Setting (Lesson 10-1)
- Relationship Skills: Build Relationships (Lesson 10-2)
- Self-Awareness: Self-Confidence (Lesson 10-3)
- Responsible Decision-Making: Evaluate (Lesson 10-4)
- Social Awareness: Respect Others (Lesson 10-5)
- Self-Awareness: Self-Efficacy (Lesson 10-6)

Resources		
Textbook	Manipulatives/Materials	Digital
Lesson 10-1	- Base-Ten Blocks	
Lesson 10-2	- Blank Cubes	
Lesson 10-3	- Colored Pencils	
Lesson 10-4	- Index Cards	

```
Lesson 10-5
Lesson 10-6
```

- Multiplication Fact Table, to 10

Teaching Resources

- Fact Cards
- Problem-Solving Tool Teaching Resource
- Spinner Numbers Teaching Resource
- Transparent Spinners

Unit 11 - Perimeter (11 days) March 7 - March 21

General Description of the Unit

In this unit, students discover strategies for finding the perimeter of figures, including work with composite figures. Students are introduced to perimeter by finding the distance around a rectangle and then a rectangular garden. After finding the perimeter of rectangles students continue to find the perimeter of irregular and composite figures. Knowledge of perimeter leads students to finding missing, or unknown, side lengths.

Priority Standards

- 3.AT. 5 Determine the unknown whole number in a multiplication or division equation relating three whole numbers.

Proficiency Scales
 - 3.AT. 5
 Enduring Understandings

- Students develop understanding of perimeter and how to find the perimeter of a figure.
- Students develop understanding of the relationship between perimeter and area.
- Students develop understanding that figures with the same perimeter can have different areas.
- Students develop understanding that figures with the same area can have different perimeter.
- Students build proficiency with using different strategies to find the perimeter of a figure.

Supporting Standards

- 3.AT. 2 Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).
- 3.M. 7 Find perimeters of polygons given the side lengths or by finding an unknown side length.

Tiered Assessments

Essential Questions

- What do you notice?
- What do you wonder?
- Which doesn't belong?
- Is the statement always true?
- What math do you see in the problem?
- Students build proficiency with using perimeter to identify the length of an unknown side.
- Students build proficiency with solving problems involving area and perimeter.
- Students build proficiency with solving problems involving length measurements.

Key Concepts

- I can explain when a measurement describes perimeter.
- I can determine the perimeter of a figure.
- I can use different strategies to find the perimeter of a figure.
- I can explain how to use different strategies to find the perimeter of a figure.
- I can find an unknown side length of a figure if the perimeter is known.
- I can explain how to find an unknown side length if the perimeter is known.
- I can solve problems involving area and perimeter.
- I can explain how to solve problems involving area and perimeter.

Math Terms

- Perimeter
- Unknown
- Area
- Bar Diagram
- Length

Academic Terms

- Investigate
- Strategy
- Support
- Information
- Comparison
- Conclude
- I can solve multiplication and division problems involving length measurements.
- I can explain how to solve problems involving length measurements.

Mathematical Processes

Employability Skills

- Construct viable arguments and critique the reasoning of others.
- Reason abstractly and quantitatively.
- Make sense of problems and persevere in solving them.
- Model with mathematics.

SEL Indicators

- Social Awareness: Appreciate Diversity (Lesson 11-1)
- Self-Awareness: Identify Emotions (Lesson 11-2)
- Relationship Skills: Teamwork (Lesson 11-3)
- Responsible Decision-Making: Analyze Situations (Lesson 11-4)
- Self-Management: Self-Disciple (Lesson 11-5)

Resources

Textbook	Manipulatives/Materials	Digital
Lesson 11-1	- Color Tiles	
Lesson 11-2	- Grid Paper	
Lesson 11-3	- Playing Cards	
Lesson 11-4	- Precut shapes labeled with	
Lesson 11-5	missing side length and total perimeter - Blank Cubes	

General Description of the Unit

In this unit students explore a variety of measurement and data topics while applying skills with the four operations to solve problems related to those topics. Students work with liquid volume and mass, tell time to the minute and determine time intervals, and collect/record data anda create/analyze scaled picture and bar graphs. Students also measure to halves and fourths of an inch and show such measurement data on a line plot.

Priority Standards

- 3.M. 2 Choose and use appropriate units and tools to estimate and measure length, weight, and temperature. Estimate and measure length to a quarter-inch, weight in pounds, and temperature in degrees Celsius and Fahrenheit.
- 3.M. 3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve real-world problems involving addition and subtraction of time intervals in minutes
- 3.M.4 Find the value of any collection of coins and bills. Write amounts less than a dollar using the $\$$ symbol and write larger amounts using the $\$$ symbol in the form of dollars and cents (e.g., \$4.59). Solve real-world problems to determine whether there is enough money to make a purchase.

Supporting Standards

- 3.DA. 1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.
- 3.DA. 2 Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.
- 3.M. 1 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (l). Add, subtract, multiply, or divide to solve one-step real-world problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).

Tiered Assessments

Essential Questions

- Students develop an understanding of how to measure liquid volume
- Students develop an understanding of measuring mass using grams and kilograms.
- Students develop an understanding of measuring length to the nearest half inch and quarter inch.
- Students develop an understanding of telling time to the nearest minute.
- Students develop an understanding of using scaled pictures and bar graphs.
- Students develop an understanding of using line plots.

Key Concepts

- I can measure liquid volume in milliliters and liters.
- I can explain how to measure liquid volume in milliliters and liters.
- I can estimate liquid volume and solve problems involving liquid volume.
- I can explain how to estimate liquid volume and solve problems involving liquid volume.
- I can measure mass in grams and kilograms.
- I can explain how to measure mass in grams and kilograms.
- I can estimate mass and solve problems with mass.
- How can I measure and record data? (Unit Question)
- What do you notice?
- What do you wonder?
- What question could you ask?
- Which doesn't belong?
- What is the best way to accurately weigh an object?
- How are they the same?
- How are they different?
- Is the statement always true?

Related Concepts

- N/A

Math Terms

- Liquid Volume
- Liter (L)
- Estimate
- Balance Scale
- Gram (g)
- Kilogram (kg)
- Mass
- Analog Clock
- Digital Clock
- Number Line
- Key
- Picture Graph
- Ruler
- Line Plot
- Dollar Bill
- Dollar Sign (\$)
- Celsius
- Fahrenheit
- I can explain how to estimate mass and solve problems with mass.
- I can recognize units of weight.

Academic Terms

- Compare
- Strategy
- I can measure using units of weight.
- I can tell time to the nearest
- Discuss
- Effect
- Indicate minute.
- I can explain how to tell time to
- Organize the nearest minute.
- I can solve problems using time
- Strategy
- Analyze intervals.
- Contrast
- I can explain how to solve
- Interval problems involving time intervals.
- Collect
- Label
- Information
- I can interpret data in a scaled
- Summarize picture graph.
- I can draw a scaled picture
- Identify graph to represent a data set.
- Create
- I can draw a scaled bar graph to
- Arrange represent a data set.
- I can describe how to draw a
- Similar
- Scale scaled bar graph to represent a data set.
- I can solve problems involving scaled graphs.
- I can explain how to solve problems involving scaled graphs.
- Situation
- I can measure to the nearest half and fourth of an inch.
- I can explain how to measure to the nearest half and fourth of an inch.
- I can generate and represent measurement data on a line plot.
- I can explain how to generate and represent measurement data on a line plot.
- I can determine the value of a group of mixed coins or dollar bills.
- I can measure temperature to the nearest degree on a Fahrenheit scale.
- I can measure temperature to the nearest degree on a Celsius scale.

Mathematical Processes

- Use appropriate tools strategically.
- Model with mathematics.
- Reason abstractly and quantitatively.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.
- Actively participate in effortful learning both individually and collectively.
- Engage in discussions that reflect on the mathematical thinking of self and others.
SEL Indicators
- Self-Management: Manage Stress (Lesson 12-1)
- Self-Awareness: Recognize Strengths (Lesson 12-2)
- Social-Awareness: Empathy (Lesson 12-3)
- Self-Management: Goal Setting (Lesson 12-4)
- Relationship Skills: Social Engagement (Lesson 12-5)
- Responsible Decision-Making: Ethical Responsibility (Lesson 12-6)
- Social Awareness: Respect Others (Lesson 12-7)
- Self-Management: Self-Motivation (Lesson 12-8)
- Responsible Decision: Making-Solve Problems (Lesson 12-9)
- Self-Awareness: Self-Confidence (Lesson 12-10)
- Relationship Skills: Teamwork (Lesson 12-11)

Resources

Textbook	Manipulatives/Materials	Digital
Lesson 12-1	- Everyday Containers (500 ml or	
Lesson 12-2	less)	
Lesson 12-3	- Metric Measuring Cups (500 ml)	
Lesson 12-4	- Everyday Containers (1L, 500 ml ,	
IN Lesson (Measure Weight)	250ml, 1ml)	
Lesson 12-5	- Metric Measuring Cups	
Lesson 12-6	- Water	
Lesson 12-7	- Apple	
Lesson 12-8	- Balance Scale	
Lesson 12-9	- Every Day Objects (1g, 100g, 1kg)	
Lesson 12-10	- Metric Units of Mass	
Lesson 12-11	- Student Clocks	
Lesson 12-12	- Number Lines	
Lesson 12-13	- Student Clocks - Picture Graph Teaching Resource - Playing Cards	

	- Bar Graphs Teaching Resource - Connecting Cubes - Grid Paper - Quarter-Inch Rulers Teaching Resource - Quarter-Inch Rulers - Thermometers Teaching Resource	

Unit 13 - Describe and Analyze 2-Dimensional Shapes (11 days) April 28-May 12

In this unit, students will explore categories and relationships among 2-dimensional shapes and their attributes. Students learn that a polygon with four sides is a quadrilateral, students label 2-dimensional shapes based on right angles and equal side lengths. Students learn that a right angle is an angle that forms a square corner. They will also discuss the attributes that quadrilaterals share.	
Priority Standards - 3.G. 2 Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories.	Supporting Standards - 3.G.1: Identify and describe the following: cube, sphere, prism, pyramid, cone, and cylinder. - 3.G.3: Identify, describe and draw points, lines and line segments using appropriate tools (e.g., ruler, straightedge, and technology), and use these terms when describing two-dimensional shapes.
Proficiency Scales	Tiered Assessments
Enduring Understandings - Students build on their understanding of polygons and learn about their attributes of polygons - Students build on their understanding of quadrilaterals to identify the different attributes of quadrilaterals. - Students will build on their understanding of attributes to name and classify quadrilaterals. - Students build on their understanding of 2-dimensional shapes by using given attributes to draw quadrilaterals.	Essential Questions - How can I identify, classify, and draw 2-dimensional shapes? (Unit Question) - What 2-dimensional shapes do you already know? - What do you already know about analyzing shapes? 1) - How are they the same? (13-1) - How are they different?(13-1) - What do you notice about all the images?(13-1) - What are some different ways you can compare the signs to each other?(13-1) - How might you group the signs?(13-1)

		- What do you notice that is the same among all the quadrilaterals? (13-2) - What kind of differences do you see among the quadrilaterals? (13-2) - How can you compare the quadrilaterals using what you know about polygons? (13-2) - What is the difference between a square and rectangle? (13-3) - How can you draw shapes to help you think about statements? (13-3) - What do you know about the attributes of rectangles? the attributes of squares? (13-3) - What type of shape might the student be drawing? How do you know? (13-4) - What do you notice about the parts of the shape already drawn? (13-4) - Can you think of any shapes that cannot be created based on the part of the shape you see? Explain? (13-4) - The figure extends forever in both directions. This is indicated by the arrows. Is this figure a line or point? (IN Lesson) - What shape is the gift? (IN Lesson) - What is the shape of the soup can? (IN Lesson) - Which item can roll? (IN Lesson)
Key Concepts - I can describe and classify polygons. - I can explain how to classify polygons.	Related Concepts - N/A	Math Terms - Octagon - Pentagon - Polygon - Quadrilateral - Right Angle

- I can describe quadrilaterals by their attributes.
- I can explain how to use attributes to describe quadrilaterals.
- I can classify quadrilaterals by their attributes.
- I can explain how to classify quadrilaterals by examining their attributes.
- I can use an understanding of quadrilateral categories and specific attributes to draw quadrilaterals.
- I can explain how to analyze given attributes and quadrilateral categories to draw quadrilaterals.
- I can identify points and endpoints.
- I can identify lines and line segments.
- I can identify three-dimensional figures.
- I can classify and describe threedimensional figures.

Mathematical Processes

- PS. 7 Look for and make use of structure.
- PS. 3 Construct viable arguments and critique the reasoning of others.
- PS. 5 Use appropriate tools strategically.
- Rhombus
- Point
- Line
- Line Segment
- Endpoint
- Cone
- Cube
- Cylinder
- Rectangular Prism
- Square Pyramid
- Three-Dimensional Figure
- Solid Figure
- Face
- Edge
- Vertex

Academic Terms

- Attribute
- Determine
- Compare
- Classify
- Define
- Create
- Include

Employability Skills

- PS. 2 Reason abstractly and quantitatively.
- PS. 4 Model with mathematics
- PS. 6 Attend to precision.

SEL Indicators

- Self-Management: Control Impulses (Lesson 13-1)
- Relationship Skills: Communication (Lesson 13-2)
- Social Awareness: Develop Perspective (Lesson 13-3)
- Responsible Decision: Making-Identify Problems (Lesson 13-4)

Resources		
Textbook Lesson 13-1 Lesson 13-2 Lesson 13-3 Lesson 13-4 IN Lesson (Points, Lines, and Line Segments)	Manipulatives/Materials - Pattern Blocks - Polygons Teaching Resource - Geoboards - Grid Paper - Rubber Bands - Quadrilaterals Teaching Resource - Rulers - Paper Local Maps - Number Lines - Colored Pencils or Markers	Digital

